Note:
This project will be discontinued after December 13, 2021. [more]
Product:
Wolfssl
(Wolfssl)Repositories | https://github.com/wolfSSL/wolfssl |
#Vulnerabilities | 56 |
Date | Id | Summary | Products | Score | Patch | Annotated |
---|---|---|---|---|---|---|
2022-02-24 | CVE-2022-25640 | In wolfSSL before 5.2.0, a TLS 1.3 server cannot properly enforce a requirement for mutual authentication. A client can simply omit the certificate_verify message from the handshake, and never present a certificate. | Wolfssl | 7.5 | ||
2022-08-08 | CVE-2022-34293 | wolfSSL before 5.4.0 allows remote attackers to cause a denial of service via DTLS because a check for return-routability can be skipped. | Wolfssl | 7.5 | ||
2022-08-31 | CVE-2022-38152 | An issue was discovered in wolfSSL before 5.5.0. When a TLS 1.3 client connects to a wolfSSL server and SSL_clear is called on its session, the server crashes with a segmentation fault. This occurs in the second session, which is created through TLS session resumption and reuses the initial struct WOLFSSL. If the server reuses the previous session structure (struct WOLFSSL) by calling wolfSSL_clear(WOLFSSL* ssl) on it, the next received Client Hello (that resumes the previous session)... | Wolfssl | 7.5 | ||
2022-08-31 | CVE-2022-38153 | An issue was discovered in wolfSSL before 5.5.0 (when --enable-session-ticket is used); however, only version 5.3.0 is exploitable. Man-in-the-middle attackers or a malicious server can crash TLS 1.2 clients during a handshake. If an attacker injects a large ticket (more than 256 bytes) into a NewSessionTicket message in a TLS 1.2 handshake, and the client has a non-empty session cache, the session cache frees a pointer that points to unallocated memory, causing the client to crash with a... | Wolfssl | 5.9 | ||
2022-09-02 | CVE-2021-44718 | wolfSSL through 5.0.0 allows an attacker to cause a denial of service and infinite loop in the client component by sending crafted traffic from a Machine-in-the-Middle (MITM) position. The root cause is that the client module accepts TLS messages that normally are only sent to TLS servers. | Wolfssl | 5.9 | ||
2022-09-29 | CVE-2022-39173 | In wolfSSL before 5.5.1, malicious clients can cause a buffer overflow during a TLS 1.3 handshake. This occurs when an attacker supposedly resumes a previous TLS session. During the resumption Client Hello a Hello Retry Request must be triggered. Both Client Hellos are required to contain a list of duplicate cipher suites to trigger the buffer overflow. In total, two Client Hellos have to be sent: one in the resumed session, and a second one as a response to a Hello Retry Request message. | Wolfssl | 7.5 | ||
2022-10-15 | CVE-2022-42961 | An issue was discovered in wolfSSL before 5.5.0. A fault injection attack on RAM via Rowhammer leads to ECDSA key disclosure. Users performing signing operations with private ECC keys, such as in server-side TLS connections, might leak faulty ECC signatures. These signatures can be processed via an advanced technique for ECDSA key recovery. (In 5.5.0 and later, WOLFSSL_CHECK_SIG_FAULTS can be used to address the vulnerability.) | Wolfssl | 5.3 | ||
2022-11-07 | CVE-2022-42905 | In wolfSSL before 5.5.2, if callback functions are enabled (via the WOLFSSL_CALLBACKS flag), then a malicious TLS 1.3 client or network attacker can trigger a buffer over-read on the heap of 5 bytes. (WOLFSSL_CALLBACKS is only intended for debugging.) | Wolfssl | 9.1 | ||
2023-07-17 | CVE-2023-3724 | If a TLS 1.3 client gets neither a PSK (pre shared key) extension nor a KSE (key share extension) when connecting to a malicious server, a default predictable buffer gets used for the IKM (Input Keying Material) value when generating the session master secret. Using a potentially known IKM value when generating the session master secret key compromises the key generated, allowing an eavesdropper to reconstruct it and potentially allowing access to or meddling with message contents in the... | Wolfssl | 8.8 | ||
2024-02-09 | CVE-2023-6935 | wolfSSL SP Math All RSA implementation is vulnerable to the Marvin Attack, new variation of a timing Bleichenbacher style attack, when built with the following options to configure: --enable-all CFLAGS="-DWOLFSSL_STATIC_RSA" The define “WOLFSSL_STATIC_RSA” enables static RSA cipher suites, which is not recommended, and has been disabled by default since wolfSSL 3.6.6. Therefore the default build since 3.6.6, even with "--enable-all", is not vulnerable to the Marvin Attack. The... | Wolfssl | 5.9 |