Note:
This project will be discontinued after December 13, 2021. [more]
Product:
Openssl
(Openssl)Repositories |
• https://github.com/openssl/openssl
• git://git.openssl.org/openssl.git |
#Vulnerabilities | 246 |
Date | Id | Summary | Products | Score | Patch | Annotated |
---|---|---|---|---|---|---|
2016-03-02 | CVE-2016-0703 | The get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a accepts a nonzero CLIENT-MASTER-KEY CLEAR-KEY-LENGTH value for an arbitrary cipher, which allows man-in-the-middle attackers to determine the MASTER-KEY value and decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800. | Openssl | 5.9 | ||
2016-03-02 | CVE-2016-0704 | An oracle protection mechanism in the get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a overwrites incorrect MASTER-KEY bytes during use of export cipher suites, which makes it easier for remote attackers to decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800. | Openssl | 5.9 | ||
2016-03-03 | CVE-2016-0702 | The MOD_EXP_CTIME_COPY_FROM_PREBUF function in crypto/bn/bn_exp.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not properly consider cache-bank access times during modular exponentiation, which makes it easier for local users to discover RSA keys by running a crafted application on the same Intel Sandy Bridge CPU core as a victim and leveraging cache-bank conflicts, aka a "CacheBleed" attack. | Ubuntu_linux, Debian_linux, Node\.js, Openssl | 5.1 | ||
2016-03-03 | CVE-2016-0705 | Double free vulnerability in the dsa_priv_decode function in crypto/dsa/dsa_ameth.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a malformed DSA private key. | Ubuntu_linux, Debian_linux, Android, Openssl, Mysql | 9.8 | ||
2016-03-03 | CVE-2016-0797 | Multiple integer overflows in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allow remote attackers to cause a denial of service (heap memory corruption or NULL pointer dereference) or possibly have unspecified other impact via a long digit string that is mishandled by the (1) BN_dec2bn or (2) BN_hex2bn function, related to crypto/bn/bn.h and crypto/bn/bn_print.c. | Ubuntu_linux, Debian_linux, Node\.js, Openssl | 7.5 | ||
2016-03-03 | CVE-2016-0799 | The fmtstr function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g improperly calculates string lengths, which allows remote attackers to cause a denial of service (overflow and out-of-bounds read) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-2842. | Openssl, Client, Steel_belted_radius | 9.8 | ||
2016-03-03 | CVE-2016-2842 | The doapr_outch function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not verify that a certain memory allocation succeeds, which allows remote attackers to cause a denial of service (out-of-bounds write or memory consumption) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-0799. | Openssl | 9.8 | ||
2016-05-05 | CVE-2000-1254 | crypto/rsa/rsa_gen.c in OpenSSL before 0.9.6 mishandles C bitwise-shift operations that exceed the size of an expression, which makes it easier for remote attackers to defeat cryptographic protection mechanisms by leveraging improper RSA key generation on 64-bit HP-UX platforms. | Openssl | 7.5 | ||
2016-05-05 | CVE-2016-2105 | Integer overflow in the EVP_EncodeUpdate function in crypto/evp/encode.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of binary data. | Mac_os_x, Ubuntu_linux, Debian_linux, Node\.js, Openssl, Leap, Opensuse, Mysql, Enterprise_linux_desktop, Enterprise_linux_hpc_node, Enterprise_linux_hpc_node_eus, Enterprise_linux_server, Enterprise_linux_server_aus, Enterprise_linux_server_eus, Enterprise_linux_workstation | 7.5 | ||
2016-05-05 | CVE-2016-2106 | Integer overflow in the EVP_EncryptUpdate function in crypto/evp/evp_enc.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of data. | Openssl, Enterprise_linux_desktop, Enterprise_linux_hpc_node, Enterprise_linux_hpc_node_eus, Enterprise_linux_server, Enterprise_linux_server_aus, Enterprise_linux_server_eus, Enterprise_linux_workstation | 7.5 |