Product:

Spark

(Apache)
Repositories

Unknown:

This might be proprietary software.

#Vulnerabilities 19
Date Id Summary Products Score Patch Annotated
2023-05-02 CVE-2023-32007 ** UNSUPPORTED WHEN ASSIGNED ** The Apache Spark UI offers the possibility to enable ACLs via the configuration option spark.acls.enable. With an authentication filter, this checks whether a user has access permissions to view or modify the application. If ACLs are enabled, a code path in HttpSecurityFilter can allow someone to perform impersonation by providing an arbitrary user name. A malicious user might then be able to reach a permission check function that will ultimately build a Unix... Spark 8.8
2018-10-24 CVE-2018-11804 Spark's Apache Maven-based build includes a convenience script, 'build/mvn', that downloads and runs a zinc server to speed up compilation. It has been included in release branches since 1.3.x, up to and including master. This server will accept connections from external hosts by default. A specially-crafted request to the zinc server could cause it to reveal information in files readable to the developer account running the build. Note that this issue does not affect end users of Spark,... Spark 7.5
2018-08-13 CVE-2018-11770 From version 1.3.0 onward, Apache Spark's standalone master exposes a REST API for job submission, in addition to the submission mechanism used by spark-submit. In standalone, the config property 'spark.authenticate.secret' establishes a shared secret for authenticating requests to submit jobs via spark-submit. However, the REST API does not use this or any other authentication mechanism, and this is not adequately documented. In this case, a user would be able to run a driver program... Spark 4.2
2020-11-28 CVE-2020-27218 In Eclipse Jetty version 9.4.0.RC0 to 9.4.34.v20201102, 10.0.0.alpha0 to 10.0.0.beta2, and 11.0.0.alpha0 to 11.0.0.beta2, if GZIP request body inflation is enabled and requests from different clients are multiplexed onto a single connection, and if an attacker can send a request with a body that is received entirely but not consumed by the application, then a subsequent request on the same connection will see that body prepended to its body. The attacker will not see any data but may inject... Kafka, Spark, Debian_linux, Jetty, Oncommand_system_manager, Snap_creator_framework, Blockchain_platform, Communications_converged_application_server_\-_service_controller, Communications_offline_mediation_controller, Communications_pricing_design_center, Communications_services_gatekeeper, Communications_session_route_manager, Flexcube_private_banking, Hyperion_infrastructure_technology, Rest_data_services, Retail_eftlink, Siebel_core_\-_automation 4.8
2018-07-12 CVE-2018-1334 In Apache Spark 1.0.0 to 2.1.2, 2.2.0 to 2.2.1, and 2.3.0, when using PySpark or SparkR, it's possible for a different local user to connect to the Spark application and impersonate the user running the Spark application. Spark 4.7
2018-07-12 CVE-2018-8024 In Apache Spark 2.1.0 to 2.1.2, 2.2.0 to 2.2.1, and 2.3.0, it's possible for a malicious user to construct a URL pointing to a Spark cluster's UI's job and stage info pages, and if a user can be tricked into accessing the URL, can be used to cause script to execute and expose information from the user's view of the Spark UI. While some browsers like recent versions of Chrome and Safari are able to block this type of attack, current versions of Firefox (and possibly others) do not. Spark, Firefox 5.4
2018-11-19 CVE-2018-17190 In all versions of Apache Spark, its standalone resource manager accepts code to execute on a 'master' host, that then runs that code on 'worker' hosts. The master itself does not, by design, execute user code. A specially-crafted request to the master can, however, cause the master to execute code too. Note that this does not affect standalone clusters with authentication enabled. While the master host typically has less outbound access to other resources than a worker, the execution of... Spark 9.8
2019-02-04 CVE-2018-11760 When using PySpark , it's possible for a different local user to connect to the Spark application and impersonate the user running the Spark application. This affects versions 1.x, 2.0.x, 2.1.x, 2.2.0 to 2.2.2, and 2.3.0 to 2.3.1. Spark 5.5
2019-08-07 CVE-2019-10099 Prior to Spark 2.3.3, in certain situations Spark would write user data to local disk unencrypted, even if spark.io.encryption.enabled=true. This includes cached blocks that are fetched to disk (controlled by spark.maxRemoteBlockSizeFetchToMem); in SparkR, using parallelize; in Pyspark, using broadcast and parallelize; and use of python udfs. Spark 7.5